UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

Facolta di Scienze MM. FF. NN. CdL triennale in Fisica

Studio del fake rate di elettroni da jet QCD nel calorimetro ECAL di CMS

Cristian Consonni

02 dicembre 2008

Relatore:

Prof. Marco Paganoni

Correlatore:

Dott. Roberto Salerno

C. Consonni (UniMib)

Fake rate di elettroni da jet QCD in ECAL CMS

02/12/08 1 / 19

Outline

Introduzione

- Il Large Hadron Collider
- Il rivelatore CMS
- Il calorimetro elettromagnetico ECAL

L'analisi del fake rate

- Motivazione fisica
- Definizione
- Associazione e-jet
- Selezioni elettroniche
- Fake rate integrato

3 Conclusioni

02/12/08 2 / 19

Il Large Hadron Collider

Il Large Hadron Collider (LHC) è un acceleratore protone-protone circolare:

- $E_{cdm} = 14 \ TeV$
- Luminosità a regime $L = 10^{34} \ cm^{-2} s^{-1}$

4 esperimenti:

- CMS
- ATLAS
- LHCb
- ALICE

Particelle (p) iniettate in "bunches":

- $1.15 \times 10^{11} \ \text{p/bunch} \rightarrow \sim 20 \ \text{coll/cross}$
- Spaziatura temporale 25 $ns \rightarrow$ 40 MHz

C. Consonni (UniMib)

02/12/08 3 / 19

CMS The Compact Muon Solenoid

CMS è un rivelatore general-purpose.

- Rivelatore cilindrico: 21 m, Ø16 m, 12500 t;
- Campo magnetico 4 T;
- Rivelatore ermetico (barrel + endcaps)

ECAL

Il calorimetro elettromagnetico

Il calorimetro elettromagnetico misura l'energia di fotoni ed elettroni. Cristalli di *PbWO*₄:

- $\rho = 8.3 \ g/cm^3$, $X_0 = 0.89 \ cm$, $R_m = 2.19 \ cm$;
- ~ 80% della luce raccolta in 25 *ns*, ma solo 80 γ/MeV ;
- Resistenza alla radiazione (0.3 Gy/h barrel, 15 Gy/h endcaps);

Ricostruzione di elettroni

Elettroni in CMS:

- Traccia ricostruita nel tracker
- Opposito di energia in ECAL

elettrone = (1)+(2)

Ricostruzioni erronee di elettroni:

- Getti di particelle che danno (1) + (2),
- ightarrow conversione fotonica, sovrapposizione di π^{\pm}/π^{0} .
- Decadimento di particelle secondarie in elettroni (veri)
- \rightarrow decadimento di mesoni D, B

Ci interessiamo al canale di decadimento del bosone di Higgs:

```
H \rightarrow WW^{(*)} \rightarrow e\nu e\nu
```

Un fondo pericoloso è W+jets quando jet $\rightarrow e$ (fake)

Fake rate Probabilità con la quale:

 $jet \rightarrow elettrone fake$

Difficile ottenere un sample non contaminato da altri fondi per studiare il fake rate da W+jets dai dati.

- \implies Studiamo il fake rate da jet QCD:
 - Si estrapola il fake rate per W+jets.
 - Procedura validata dai dati.

Definizione

Definizione

$$f(\text{jet} \rightarrow \text{fake electron}) = \frac{\#\text{jets matching electron}(I)}{\#\text{reconstructed jets}(d)} = \frac{n_j(e)}{n_j}$$
(1)

- (I) = faking objects;
- (d) = fakeable objects;
- (d) e (l) sono jet;
- Accettanza del tracker: $|\eta| < 2.5$, momento trasverso: $p_T > 10 \ GeV/c$.
- Si associa un flavour ad ogni jet:
 - \rightarrow light (*u*, *d*, *s*), charm, bottom, gluon;
 - Partone legato al processo fisico "iniziale" che ha generato il jet.

II fake rate totale si calcola: $f = \sum_{i} s_i \cdot w_i$

$$f(\text{jet} \rightarrow \text{fake electron}) = \frac{\#\text{jets matching electron}(l)}{\#\text{reconstructed jets}(d)} = \frac{n_j(e)}{n_j}$$
(1)

Ad ogni elettrone ricostruito è associato un jet (faking object) che minimizza:

$$\Delta R_{ele-jet} = \sqrt{\Delta \eta^2 + \Delta \Phi^2}$$

Si riproducono con jet QCD eventi *W*+jets:

- Prescaled Single Jet Trigger (HLT) studiate 4 diverse soglie: 30, 60, 110 e 150 GeV/c)
- Il leading jet ha il ruolo dell'e dal decadimento di W (|η| < 2.5)

Associazione e-jet

Correlazione in p_T

- Basso momento $\rightarrow e r_{10-15} = 0.7377 \pm 0.0010$
- Alto momento $\rightarrow e r_{95-100} = 0.2866 \pm 0.0016$

$$f(\text{jet} \rightarrow \text{fake electron}) = \frac{\#\text{jets matching electron}(l)}{\#\text{reconstructed jets}(d)} = \frac{n_j(e)}{n_j}$$
(1)

Applichiamo diverse selezioni agli e ricostruiti:

- Pre-selezione
- Identificazione elettronica
- Isolamento di traccia

Pre-selezione

Numeratore 1/4

Prima ricostruzione elettronica (associazione traccia-supercluster):

- Corrispondenza in η ($\eta_{SC} \leftrightarrow \eta_{in}^{extrap.}$) e Φ ($\Phi_{SC} \leftrightarrow \Phi_{in}^{extrap.}$)
- Rapporto energia deposta HCAL/ECAL
- Ambiguity solving
- Scartato l'e se il leading jet è in un cono $\Delta R < 0.3$

Fig.: Fake rate dopo la pre-selezione e flavour decomposition. HLT a 30 GeV/c

Tab.: Composizione % faking objects per diversi valori di p_T : (a) 22.5 GeV/c, (b) 52.5 GeV/c, (c) 82.5 GeV/c

CandHLT1jetPE7 (30 GeV/c)				
	а	b	С	
light	35.3%	29.8%	31.2%	
gluon	52.5%	58.3%	54.2%	
charm	7.7%	6.8%	8.7%	
bottom	4.4%	5.0%	5.9%	

C. Consonni (UniMib)

Identificazione ed Isolamento elettronico

Numeratore (2+3)/4

Identificazione elettronica (eleID):

- *H*/*E*
- |ΔΦ| e |Δη|
- Σ_9/Σ_{25}

• $\sigma_{\eta\eta}$

Fig.: Fake rate dopo eleID, sono applicate diverse soglie dell'HLT

Isolamento elettronico (tklso):

- $\sum_{tck} p_T^{tck}$ in un cono di isolamento
- $2 \Delta IP_L$
- Veto cone
- \Rightarrow Isolamento: $\sum_{tck} (p_T^{tck} / p_T^{ele})$

Fig.: Fake rate dopo tklso, sono applicate diverse soglie dell'HLT

Selezioni in sequenza

Numeratore 4/4

Ora applichiamo le selezioni pre-sel + eleID + tklso in sequenza:

- L'applicazione delle selezioni in sequenza causa il rigetto di un numero elevato di eventi
- → Statistica insufficiente
 - Il fake rate misurato è $\mathcal{O}(10^{-4})$

Tab.: Composizione % faking objects per diversi valori di p_T : (a) 22.5 GeV/c, (b) 52.5 GeV/c, (c) 82.5 GeV/c

CandHLT1jetPE7 (30 GeV/c)				
	а	b	С	
light	52.6%	93.0%	—	
gluon	uon 30.4%		—	
charm	14.3%	_	_	
bottom	1.5%	.5% 5.5%		
HLT1jetPE1 (150 GeV/c)				
light	85.8%	61.3%	—	
gluon	1.3%	8.0%	_	
charm	5.1%	_	_	
bottom	1.3%	_	_	

×

Fake rate integrato

Definizione

probability(jet→ fake e)/(5 GeV/c)

Definizione

$$\mathcal{F}(ilde{
ho_{\mathcal{T}}}) = rac{\int_{ ilde{
ho}_{\mathcal{T}}}^{\infty} n_{\mathrm{j}}(\mathrm{e})}{\int_{ ilde{
ho}_{\mathcal{T}}}^{\infty} n_{\mathrm{j}}}$$

Fig.: Fake rate integrato dopo

pre-sel+eleID+tklso, sono applicate

(2)

Mettiamo in grafico il rapporto al variare del limite minimo di integrazione.

Fig.: Fake rate integrato dopo le selezioni di pre-selezione, sono applicate diverse soglie dell'HLT

Conclusioni

Getti di particelle possono dare il segnale di un elettrone:

 \implies Abbiamo definito il fake rate: rapporto tra $\frac{\# \text{ faking jets } (I)}{\# \text{ fakeable jet } (d)}$

Ne abbiamo analizzato l'andamento applicando:

- Diverse soglie per il Single Jet Trigger
- Diverse procedure di selezione elettronica
- a Pre-selezione
- b Identificazione elettronica
- c Isolamento elettronico

 \implies L'applicazione del Single Jet Trigger con queste selezioni non modifica il fake rate.

 \implies Possiamo dare una stima del fake rate prima e dopo le selezioni elettroniche:

$$\mathcal{O}(10^{-1})
ightarrow \mathcal{O}(10^{-4})$$

Backup

C. Consonni (UniMib)

Fake rate di elettroni da jet QCD in ECAL CMS

02/12/08 17 / 19

Ottenuta una stima del fake rata da jet QCD (f_{QCD}):

di eventi "fake" per W+jets

 $\varphi_{W+jets}(\text{jet} \to \text{fake electron}) = \mathcal{L} \times \sigma(W + jets) \times BR(W \to e\nu) \times \varepsilon_t \times f_{QCD}$ (3)

Successivamente è possibile (CMS-NOTE AN-2008/39):

- estendere la selezione per $H \rightarrow WW^{(*)} \rightarrow e\nu e\nu$ da $(l + l) \rightarrow (l + d)$;
- **2** ripesare la distribuzione (I + d) con il fake rate calcolato nel sample QCD;
- individuare per eventi W+jet una distibuzione per i segnali (I + I), si usano informazioni a livello di generatore;

Le due distribuzioni sono confrontabili.

EleID Tagli di selezione

Variabile	Barrel				
	golden	brem	narrow	showering	
H/E <	0.05	0.05	0.05	0.05	
$\Delta \Phi_{in} <$	0.02	0.03	0.02	0.04	
$\Delta \eta_{in} <$	0.004	0.004	0.004	0.005	
$\Sigma_9/\Sigma_{25}>$	0.8	0.65	0.75	0.65	
$\sigma_{\eta\eta}$ [,]	0.005-0.011	0.005-0.011	0.005-0.011	0.005-0.011	

Variabile	Endcaps				
	golden	brem	narrow	showering	
H/E <	0.07	0.07	0.07	0.07	
$\Delta \Phi_{in} <$	0.04	0.04	0.04	0.05	
$\Delta\eta_{in} <$	0.005	0.005	0.005	0.005	
$\Sigma_9/\Sigma_{25} >$	0.8	0.7	0.7	0.65	
$\sigma_{\eta\eta}$ [,]	0.008-0.03	0.008-0.03	0.008-0.03	0.008-0.03	

X,