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A B S T R A C T

In this paper, the applicability of machine learning models and techniques to the Markov–Dubins path planning
problem have been explored. Machine learning techniques are already applied to several fields, which range
from computer vision, to physics simulation, to item recommendation, to user profiling. This pervasiveness
has led to marked improvements in the implementation and support for applying machine learning models, in
particular for specialised use cases such as low-power devices, embedded hardware, and real-time applications.
On the other hand, the Markov–Dubins path planning problem, which is central in robotic nonholonomic
trajectory design, is already covered by established numerical and optimisation techniques. However, the
benefits of applying machine learning approaches to this problem remain to be investigated. In particular,
there is the need to research potential speed-ups or application domains that would be better solved by a
machine learning approach compared to the traditional algorithmic approaches. In this study, we train a
state-of-the-art machine learning model in a supervised setting on Markov–Dubins and use it in two different
ways: to directly predict the solution, and to filter candidate solutions. Also, a comparison of the quality
of these predictions with a state-of-the-art Markov–Dubins solver is made. The results obtained indicate that
machine learning approaches are comparable to state-of-the-art solutions: our bare model, directly predicting
the solution, appears to be 8.3 times faster than the current standard, sacrificing the accuracy, which amounts
to a value close to 92%; the hybrid model that filters the solutions prior to finding the best candidate runs in
times that are comparable to the classical solver (58 ms) and has over 98% accuracy. A further comparison
with alternative solvers and techniques, such as Optimal Control, NonLinear Programming and Mixed Integer
NonLinear Programming has been made, confirming the benefits of the machine learning approach over these,
for which the computational times are in the range of seconds. This opens new avenues for interdisciplinary
applications of machine learning to more general planning problems (e.g., the same problem in 3D), where
the number of possible manoeuvres is large and the computation of each of them requires a considerable
computational effort, which makes the brute force trial-and-error infeasible.
. Introduction

The generation of paths with nonholonomic constraints is a cen-
ral task in most applied sciences, such as mathematical modelling,
obotics, additive manufacturing for biotechnology and industry, nav-
gation and other related fields, (Laumond et al., 1994; Sharma et al.,
021). A feasible and classic approach for the design of trajectories
path and speed profile) is the employment of 2D Markov–Dubins
aths (Markov, 1887; Dubins, 1957) or biarcs (Bolton, 1975; Sabin,
976): both contain line segments and circle arcs as elements of the
ath. These elements are called curve primitives. Geometrically, they
olve the 𝐶1 Hermite interpolation problem, that is, they produce a
equence of lines and circles that connect an initial to a final posture
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with continuity up to the first derivative. By posture, it is intended
a point with an orientation, which can be described by the triple
𝒑 = (𝑥, 𝑦, 𝜗). Biarcs solve the problem of joining 𝒑𝑖 with 𝒑𝑓 using two
circle arcs (that may degenerate to a line segment), whereas a Markov–
Dubins path is composed generally of a sequence of three elements
(line segments and circle arcs) with a limited turning radius. A precise
description of Markov–Dubins paths is presented in the next section.

Among their many good properties, lines and circles are particularly
useful mainly for the parametrisation with arc length and because
the offset of these curve primitives is the same primitive (e.g., the
offset of a circle is a circle), also, their description is straightforward.
These properties do not hold for more complex primitives, for instance,
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polynomials or other transcendent curves that often cannot be ex-
pressed by elementary functions and do not allow easy integration in
industrial tools, e.g., in Computer-Aided Design (CAD). Despite their
simple formulation, lines and circle arcs are effectively implemented in
a plethora of applications.

The first traditional field where Markov–Dubins curves are em-
ployed is in mobile robotics since a Markov–Dubins path is the shortest
path that connects two postures 𝒑𝑖, 𝒑𝑓 enforcing the limited manoeu-
vrability of the vehicle (e.g., limited steering angle and no lateral
movements), (Boissonnat et al., 1994). An interesting case study is
the Markov–Dubins Travelling Salesman Problem (DTSP), where the
aim is to find the shortest closed path that connects a list of points,
each of which has to be visited exactly once, while also considering
the restraints of a robot, here modelled as a Markov–Dubins vehicle.
This problem has been traditionally solved in two steps: first, the
mission planning stage determines the order in which the points need
to be visited, then, the path planning step predicts the trajectories that
connect each pair of points Ny et al. (2012).

In manufacturing technologies, and more specifically in the context
of Computer Numerical Control (CNC) milling, machines and tools
are controlled by a standard language, the so-called g-code. This is
produced by CAD software from a model prototype, whereby lines and
circles are implemented to be the set of instructions that the machines
have to follow.

Similar calculations have to be performed in additive manufactur-
ing, such as 3D printing and bioprinting: in these cases, a 3D solid
object first needs to be converted into a sequence of machine move-
ments, which is usually encoded in g-code (Gulyas et al., 2018). While
posing biomaterials, cells and bioactive molecules, the nozzle follows
the nominal trajectory layer by layer, hence the path is locally planar
and parallel curves (offsets) are often required, thus the aforementioned
property of expressing the offset with the same primitive of the nominal
path is important.

In GPS navigation, a solution to optimal coverage path planning, for
example, for agricultural machines in crop fields is based on Markov–
Dubins curves, (Hameed, 2017).

More recently, a novel application of Markov–Dubins curves has
been discovered: steerable needles have been developed to improve
drug delivery and surgery in the medical field, to be able to target
positions that are difficult to reach with traditional methods, (Webster
III et al., 2006). Such needles can be approximated as having constant
radius of curvature and controlled by applying forces at the base. In two
dimensions, this is equivalent to using Markov–Dubins paths, (Duindam
et al., 2010).

Although most of the relevant features, properties and algorithms
about biarcs (Bolton, 1975; Sabin, 1976; Bertolazzi et al., 2020) have
been solved, often in elegant closed form (Bertolazzi and Frego, 2019),
thus making them particularly suitable for real-time applications (e.g.,
feeding tools with an update every 20 ms), (Piegl and Tiller, 2002b,a;
Park, 2004), biarcs, do not consider the limitation of the curvature
nor the length of the resulting path. Bounded curvature is important
because it models a physical limitation of the tool: the turning radius
cannot be arbitrarily small. This limitation models the fact that a
physical vehicle cannot steer the wheels more than a fixed angle. These
issues have been considered and solved with Markov–Dubins paths
(Shkel and Lumelsky, 2001; Kaya, 2017, 2019; Bevilacqua et al., 2020;
Frego et al., 2020; Saccon et al., 2021), which are introduced in the
next section. On the counterpart, these improvements come at the price
of losing the straightforward algorithms of biarcs because the problem
shifts from having a closed-form solution to a nonlinear constrained
minimisation. In practice, solutions to the Markov–Dubins problem are
known via trial-and-error of feasible solutions (Shkel and Lumelsky,
2001) or by solving (small) instances of a Mixed Integer Nonlinear
Programming (MINLP), or its relaxed version, Nonlinear Programming

(NLP), (Bevilacqua et al., 2020).

2

1.1. Paper contributions

In this paper, the newest findings on Markov–Dubins curves are
combined with a supervised learning approach, which has been devel-
oped in the context of categorisation problems of Machine Learning
(ML). A new approach to solve the Markov–Dubins path is therefore
proposed: the problem is tackled by exploiting Artificial Intelligence
(AI) by means of ML.

The Markov–Dubins is formulated as a categorisation problem,
where the inputs of the machine learning system are the input param-
eters, which serve as features, and the output is a categorisation that
translates into one possible manoeuvre. The results can be readily used
inside existing machinery, as a manoeuvre is still a sequence of line
segments and circle arcs.

Furthermore, a state-of-the-art machine learning technique is em-
ployed, thereby leveraging the recent developments in the field; more
precisely an algorithm called CatBoost is applied, which exploits gradi-
ent boosting to learn a set of decision trees over the input space. Then,
it is shown how the trained model can be applied to build a software
that solves the original Markov–Dubins problem. A graphical scheme
of the overall procedure is sketched in Fig. 1.

The planar Markov–Dubins problem is at the same time difficult
and easy: it is hard because a smart solution is not available and
the best method is a brute force approach; it is easy because the
size of the problem is small, thus the cases to be tested are limited.
Nevertheless, especially in the last years, the research community tried
to find alternative solution methods (Kaya, 2017, 2019; Bevilacqua
et al., 2020; Frego et al., 2020; Faigl et al., 2020; Váňa and Faigl, 2020).
The ML approach proposed in the present study is to understand how
much AI can be useful in such a planning context.

We choose the planar Markov–Dubins problem, not because it is
easy, but because it is hard, because that goal will serve to organise
and measure what can be expected in more involved methods or in the
3D case.

This is motivated by the growing interest in extending the problem
to 3D, in which case very little is known about the properties of the
solution, but the brute force approach will become infeasible. Indeed,
in 3D, the solution is supposed to be composed of 3 segments (as in
the planar case) containing lines, circles and helices. This time, closed
form solutions are not available, and a full numerical solution is sought.
The problem becomes now the complexity, since every segment can
be a line, left/right circle, up/down/left/right helix and each instance
requires an optimisation step, which is costly. Since for the planar case
complete knowledge is available, we selected the 2D problem in order
to have an exact answer to be compared with the ML method. This
would not have been possible in the 3D case, but our study will pave
the way for a non brute force approach to it.

Another way to introduce the contributions of this paper is as fol-
lows: we learn a compressed representation of the function that solves
the Dubins–Markov problem, i.e., which is the best manoeuvre for a
given input represented by the triple (𝜗𝑖, 𝜗𝑓 , 𝜅) as in Fig. 1. Our research
questions are the following: How good (lossy) is this representation?
How does it change when using different machine learning models and
tuning their parameters? How good is the decompression? How fast?
Our work provides some answers to these questions.

The paper has the following structure: Section 2 reviews the state-of-
the-art both on Markov–Dubins paths and supervised machine learning
techniques. Section 3 provides the background necessary to formulate
the problem. In Section 4 there is a detailed description of the machine
learning technique and implementation of the prediction system using
CatBoost. Results are presented and discussed in Section 5. Section 6
concludes the paper and offers new research directions.
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Fig. 1. Overview of the proposed solution method to the Markov–Dubins problem: starting with the 7 parameters of the general problem formulation, we reduce them to 3 thanks
to the conformal map 𝐵, then, instead of testing by brute force trial-and-error the six possible manoeuvres, with a Machine Learning (ML) approach based on Catboost we learn
the triangular prism  . The coloured squares in the picture represent the solution of the Markov-Dubin problem for some slices of  . We exploit the symmetries of our formulation
to reduce the squares to the highlighted (solid black line) triangles, for several values of the maximum allowed curvature 𝜅.
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2. State-of-the-art

The first published work posing the problem of connecting two
given postures with a path of minimum length, given a constraint
on the minimum turning radius, dates back to 1889, when Markov
proposed several variants of the problem related to the design of rail-
ways (Markov, 1887). After nearly 70 years, in 1957, the first, general
solution to the problem was found and published by Dubins (1957).
His work, based on geometric arguments, showed how the optimal
solution can be constructed by concatenating at most three circle arcs
and straight lines, as explained in Section 3. A different approach to
the solution of the Markov–Dubins problem, based on optimal control
theory and on the ‘‘minimum principle of Pontryagin’’, was proposed
in the early 1990s by Boissonnat et al. (1994), Boissonnat and Bui
(1994) and, independently, by Sussmann and Tang (1991); an optimal
control solution using interval arithmetic and Chebyshev polynomials
is presented in Razmjooy et al. (2016, 2019b,a). An extensive study
on the nature of the solutions to the problem, and on the influence of
the different parameters on the type and length of the optimal paths,
was published in 2001 by Shkel and Lumelsky (2001). More recently,
in 2017, Kaya conducted an in-depth analysis on the application of
optimal control theory for the solution of the Markov–Dubins prob-
lem (Kaya, 2017). The author considered also some special conditions,
yielding abnormal control solutions based on the concatenation of at
most two circular arcs that were not taken into account by the previous
literature. Moreover, the paper presented a numerical approach based
on Nonlinear Programming to determine the optimal solution to the
problem. A simpler modelling of the problem, based on the adoption
of a single equation covering all the possible cases, was presented in
2020 by Bevilacqua et al. (2020). Since circle arcs and line segments
are described using the same function, it is possible to smoothly blend
from one type of curve to the other. Thus, the problem can be expressed
via Mixed Integer Nonlinear Programming, or also via its relaxation
to Nonlinear Programming. Moreover, the paper proposed a conformal
bipolar transform of the problem to a standard form that better captures
the inherent symmetries; this has been exploited to reduce the size of

the space to be learned, as detailed in the next sections.

3

3. Background

3.1. The Markov–Dubins problem

The Markov–Dubins problem requires finding the shortest path that
connects an initial posture 𝒑𝑖 = (𝑥𝑖, 𝑦𝑖, 𝜗𝑖) with a final posture 𝒑𝑓 =
(𝑥𝑓 , 𝑦𝑓 , 𝜗𝑓 ) such that the curvature of the path, in absolute value, is
not greater than a prescribed maximum value 𝜅 > 0, see Fig. 2. More
formally, the Markov–Dubins path is the solution of a 𝐶1 Hermite
interpolation problem with a bound on the curvature. Let (𝑠) =
𝑥(𝑠), 𝑦(𝑠)) be a 𝐶1 and piecewise 𝐶2 parametric curve. Then (𝑠) solves
he Markov–Dubins problem if (𝑠) has minimum length 𝐿 > 0 and is
ubject to:

(0) = (𝑥𝑖, 𝑦𝑖), (𝐿) = (𝑥𝑓 , 𝑦𝑓 )
′(0) = (cos 𝜗𝑖, sin 𝜗𝑖), ′(𝐿) = (cos 𝜗𝑓 , sin 𝜗𝑓 ),
|𝑘(𝑠)| ≤ 𝜅, ‖𝛾 ′(𝑠)‖ = 1, 𝑠 ∈ [0, 𝐿],

(1)

here the (signed) curvature 𝑘(𝑠) can be written as

(𝑠) =
𝑥′(𝑠)𝑦′′(𝑠) − 𝑦′(𝑠)𝑥′′(𝑠)

√

𝑥′(𝑠)2 + 𝑦′(𝑠)2
. (2)

Stated like this, problem (1) is characterised by 7 parameters, namely
the initial and final configurations (𝑥𝑖, 𝑦𝑖, 𝜗𝑖), (𝑥𝑓 , 𝑦𝑓 , 𝜗𝑓 ) and the cur-
ature (2) is constrained such that the maximum absolute allowed
alue is 𝜅. Without loss of generality, this number can be reduced to
if a certain transformation of coordinates is used. There are three
aps proposed in literature to recast a general problem into a standard

etting, the one in Boissonnat et al. (1994), the one in Shkel and
umelsky (2001) and the recent one proposed in Bevilacqua et al.
2020). The present work is based on the latter, which is here briefly
ketched. It is preferred over the others because it allows a topology
ith better properties such as two intuitive axes of symmetry that

educe the size of the parameter space.

ipolar conformal transform. Let map 𝑩 ∶ R2 ↦ R2 be the composition
f a translation, a rotation and a change of scale:
([

𝑥
])

= 1
([

cos𝜑 sin𝜑
] [

𝑥
]

−
[

�̄�
])

, (3)

𝑦 𝜆 − sin𝜑 cos𝜑 𝑦 �̄�
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Fig. 2. The standard Markov–Dubins interpolation scheme between two postures
(𝑥𝑖 , 𝑦𝑖 , 𝜗𝑖) and (𝑥𝑓 , 𝑦𝑓 , 𝜗𝑓 ). This solution is an example of Right-Segment-Left manoeuvre
(RSL).

where the following auxiliary parameters are introduced:

𝛥𝑥 = 𝑥𝑓 − 𝑥𝑖, 𝜆 = 1
2

√

𝛥𝑥2 + 𝛥𝑦2, 𝜗𝑖 = 𝜗𝑖 − 𝜑,
𝛥𝑦 = 𝑦𝑓 − 𝑦𝑖 𝜑 = atan2(𝛥𝑦, 𝛥𝑥), 𝜗𝑓 = 𝜗𝑓 − 𝜑,

(4)

and �̂� = 𝜆𝜅, so that 𝜑 is the unique angle in [−𝜋, 𝜋) that satisfies
̄ = 𝑥𝑖 cos𝜑 + 𝑦𝑖 sin𝜑 + 𝜆, and �̄� = −𝑥𝑖 sin𝜑 + 𝑦𝑖 cos𝜑, with �̄�, �̄� the
translation along the axes. With the auxiliary parameters (4), the map
𝑩 in (3) shifts the initial point (𝑥𝑖, 𝑦𝑖) to (−1, 0), rotates the axes so that
the final point lies on the horizontal axis, applies a scaling so that the
final point is mapped to (1, 0). Being a conformal map, the angles 𝜗𝑖,
𝜗𝑓 are preserved, but the curvature is scaled. In conclusion, with 𝑩,
the problem is reduced to canonical form and depends on 𝜗𝑖, 𝜗𝑓 and 𝜅
only, instead of the 7 parameters 𝒑𝑖, 𝒑𝑓 and 𝜅.

Characterisation of the solution. Dubins theorem (Dubins, 1957) states
that  is composed of at most three pieces of curve: a combination
f line segments and circle arcs, which are commonly identified with
ords, like RSL, where the letters stand for Right turn, (line) Segment
nd Left turn, respectively (see Fig. 2 for an example). Therefore, there
re no more than 15 possible combinations, namely: LSL, LSR, RSL,
SR, RLR, LRL, LS, RS, SL, SR, S, LR, RL, L, R. In practice, only the

irst six words are considered, the others can be obtained by setting to
ero some of their arcs. What makes it difficult to get the solution is
he high nonlinearity of the problem: it is not known, given an input,
ow to determine which of the six manoeuvres is the optimal one.

The problem is therefore tackled with several techniques: via trial-
nd-error of the six candidate solutions computed with trigonometric
ormulas (Boissonnat et al., 1994; Shkel and Lumelsky, 2001), via
ptimal control (OCP) (Kaya, 2017, 2019), via NonLinear Programming
NLP) or Mixed Integer NonLinear Programming (MINLP) (Bevilacqua
t al., 2020; Frego et al., 2020). Each technique has several pros and
ons, for the purpose of the present work any of them is effective,
ndeed, the trial-and-error is selected because is the fastest one.

he parameter space for training. The bipolar conformal map 𝑩 de-
scribed above has the advantage of reducing the dimension of the
parameter space from 7 to 3, moreover, this reduced space has two axes
of symmetry that can be exploited to further reduce the size of the train-
ing set given to the Machine Learning algorithm. The parameters of the
reduced space are the two angles 𝜗𝑖, 𝜗𝑓 and the value of the maximum
urvature 𝜅 > 0, hence the reduced space is ℘ = [−𝜋, 𝜋) × [−𝜋, 𝜋) ×R+.
eometrically, this is an infinite prism with square basis: any cutting
lane of constant curvature produces a square [−𝜋, 𝜋) × [−𝜋, 𝜋) as the

ones shown in Fig. 3.
The double symmetry of the solution space is apparent in Fig. 3,

indeed the proof can be found in Bevilacqua et al. (2020). Keeping the
curvature 𝜅 fixed, the axes of symmetry are the diagonals 𝜗𝑓 = ±𝜗𝑖. The
egion |𝜗𝑓 | ≤ 𝜗𝑖, for 𝜗𝑖 ∈ [0, 𝜋) is informally identified as the triangular
omain, to distinguish it from the complete square [−𝜋, 𝜋)×[−𝜋, 𝜋). This
mplies that the learning can be performed on the highlighted infinite

+
riangular prism  = {(𝜗𝑖, 𝜗𝑓 , 𝜅) ∈ [−𝜋, 𝜋) × [−𝜋, 𝜋) × R s.t. |𝜗𝑓 | < 𝜗𝑖}. 𝜃

4

s a consequence, slicing this prism with planes of constant curvature
equires sampling points of each triangle and not of the full square,
hus needing only 1∕4 of the samples. Also, for high values of curvature,

e.g., 𝜅 > 6, these regions do not change very much and only four (the
circle-line-circle sequences) of the six candidate solutions are feasible,
which can be intuitively explained considering that with enough cur-
vature, the solution with three circles is not optimal, for more details
see Boissonnat et al. (1994), Shkel and Lumelsky (2001), Kaya (2017,
2019). An important feature of our conformal map 𝑩, compared to
other approaches (e.g. Soueres and Laumond (1996)), is that the axes
of symmetry are always the two diagonals of the square, corresponding
to 𝜗𝑓 = ±𝜗𝑖.

Finally, it is possible to formalise the parameter space for the
training of the model. The set of input vectors 𝒙 = (𝜗𝑖, 𝜗𝑓 , 𝜅) is sampled
from the infinite triangular prism  cut at different values of constant
curvatures. The curvature 𝜅 is discretised in the interval (0, 8]. For each
f the generated input vector 𝒙, the optimal solution 𝑦 ∈ {LSL, LSR,
SL, RSR, RLR, LRL} labelled from 1 to 6 is computed, in order to
btain a supervised model.

.2. Available solvers

.2.1. The standard Markov–Dubins solver
There are different solvers available to solve the Markov–Dubins

roblem, among them, the one selected to produce the datasets and
est the model is our implementation of the trial-and-error of the six
andidate solutions with the formulas presented in Shkel and Lumelsky
2001). This is called the ‘‘standard’’ solver and its performance is
iscussed later in comparison with the novel ML solutions.

.2.2. OCP-based solution
Another way of solving the problem is based on Optimal Control,

here the total length of the path 𝐿 is minimised, subject to a set of
ifferential equations that model the system, boundary conditions and a
ounded control (the curvature 𝑘(𝑠)). The OCP, adapted to our notation
rom Kaya (2017), reads:

min𝐿 = ∫

𝐿

0
1 d𝑠 subject to: (5)

𝑥′(𝑠) = cos(𝜃(𝑠)), 𝑥(0) = 𝑥𝑖, 𝑥(𝐿) = 𝑥𝑓 ,

𝑦′(𝑠) = sin(𝜃(𝑠)), 𝑦(0) = 𝑦𝑖, 𝑦(𝐿) = 𝑦𝑓 ,

𝜃′(𝑠) = 𝑘(𝑠), 𝜃(0) = 𝜗𝑖, 𝜃(𝐿) = 𝜗𝑓 ,

|𝑘(𝑠)| ≤ 𝜅 for 𝑠 ∈ [0, 𝐿].

he OCP is stated in standard form and can be solved with off-the-shelf
oftware.

.2.3. OCP transcription to a NLP-based solution
The discretisation of a continuous OCP such as (5), leads to a

onLinear Programming (NLP). The formulation in Kaya (2017) glues
ogether 5 arcs in the form LRSLR, which encompasses all possible line
nd circles combinations and solves for the optimality conditions. At an
ptimal solution, at least two of the five segments will be forced to have
ero length: the ones that do not go to zero give the characterisation
f the solution. The problem is formulated as:

min𝐿 =
∑𝑛

𝑗=1
∑5

𝑖=1 𝑠𝑗,𝑖 subject to
𝑥𝑗 = 𝑥𝑗−1 + 𝑆𝑗 (𝜃𝑗,0,… , 𝜃𝑗,5)∕𝜅 + 𝑠𝑗,3 cos 𝜃𝑗,2,
𝑦𝑗 = 𝑦𝑗−1 + 𝐶𝑗 (𝜃𝑗,0,… , 𝜃𝑗,5)∕𝜅 + 𝑠𝑗,3 sin 𝜃𝑗,2,
𝑆𝑗 = − sin 𝜃𝑗,0 + 2 sin 𝜃𝑗,1 − 2 sin 𝜃𝑗,2 + 2 sin 𝜃𝑗,4 − sin 𝜃𝑗,5,
𝐶𝑗 = cos 𝜃𝑗,0 − 2 cos 𝜃𝑗,1 + 2 cos 𝜃𝑗,2 − 2 cos 𝜃𝑗,4 + cos 𝜃𝑗,5,
𝜃1,0 = 𝜗0, sin 𝜃𝑛,5 = sin 𝜗𝑛, cos 𝜃𝑛,5 = cos 𝜗𝑛,

ith the length of the sub-arcs 𝑠𝑗,𝑖 ≥ 0, angle continuity 𝜃𝑗+1,0 = 𝜃𝑗,5,
nd the angles between the elementary manoeuvres satisfying
𝑗,1 = 𝜃𝑗,0 + 𝜅𝑠𝑗,1, 𝜃𝑗,2 = 𝜃𝑗,1 − 𝜅𝑠𝑗,2, (6)
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Fig. 3. Plot of the solution word of the Markov–Dubins problem for different values of 𝜅, respectively 𝜅 = 8∕10 and 1.
t

𝑗,4 = 𝜃𝑗,2 + 𝜅𝑠𝑗,4, 𝜃𝑗,5 = 𝜃𝑗,4 + 𝜅𝑠𝑗,5. (7)

his NLP is also written in standard form, and can be solved with
vailable software.

.2.4. MINLP-based solution
A new method for solving the problem without requiring to know

xactly which kind of curve appears in each of the three segments is to
rite a line and a circle with the same equation, and then dynamically

hange the defining parameters during the optimisation phase to obtain
ne curve or the other. The parametric equations of a line segment or
f a circle arc, starting at the base point (𝑥0, 𝑦0) with initial angle 𝜗0,
ith constant curvature 𝜅 (possibly zero) and length 𝑠, are given by

𝑥(𝑠) = 𝑥0 + 𝑠sinc
(

𝜅𝑠
2

)

cos
(

𝜗0 +
𝜅𝑠
2

)

≡ 𝑥0 + 𝑓 (𝑠, 𝜅, 𝜗0)

𝑦(𝑠) = 𝑦0 + 𝑠sinc
(

𝜅𝑠
2

)

sin
(

𝜗0 +
𝜅𝑠
2

)

≡ 𝑦0 + 𝑔(𝑠, 𝜅, 𝜗0),
(8)

where 𝑠 is the arc length parameter (Bertolazzi and Frego, 2019).
Adding three consecutive terms of the previous form (8) with opportune
continuity conditions yields the system:

𝑥𝑓 = 𝑓 (𝑠0, 𝜅𝜎0, 𝜗𝑖) + 𝑓 (𝑠1, 𝜅𝜎1, 𝜗𝑖 + 𝜅𝜎0𝑠0)
+ 𝑓 (𝑠2, 𝜅𝜎2, 𝜗𝑖 + 𝜅𝜎0𝑠0 + 𝜅𝜎1𝑠1) + 𝑥𝑖,

𝑦𝑓 = 𝑔(𝑠0, 𝜅𝜎0, 𝜗𝑖) + 𝑔(𝑠1, 𝜅𝜎1, 𝜗𝑖 + 𝜅𝜎0𝑠0)
+ 𝑔(𝑠2, 𝜅𝜎2, 𝜗𝑖 + 𝜅𝜎0𝑠0 + 𝜅𝜎1𝑠1) + 𝑦𝑖,

𝜗𝑓 = 𝜗𝑖 + 𝜎0𝜅𝑠0 + 𝜎1𝜅𝑠1 + 𝜎2𝜅𝑠2.

(9)

The integer variables 𝜎𝑖 ∈ {−1, 0,+1} for 𝑖 = 0, 1, 2 model a right turning
circle, a line and a left turning circle, respectively. Therefore, the Mixed
Integer NonLinear Programming becomes

minimise 𝑠0 + 𝑠1 + 𝑠2 subject to (9)
with 𝜎𝑖 ∈ {−1, 0,+1} ⊂ Z, 𝑠𝑖 ∈ R+, 𝜗𝑖 ∈ R, (10)

with assigned boundary conditions (for 𝐿 = 𝑠0 + 𝑠1 + 𝑠2):

𝑥(0) = 𝑥𝑖, 𝑦(0) = 𝑦𝑖, 𝜗(0) = 𝜗𝑖;
𝑥(𝐿) = 𝑥𝑓 , 𝑦(𝐿) = 𝑦𝑓 , 𝜗(𝐿) = 𝜗𝑓 .

(11)

3.2.5. Relaxed MINLP-based solution
The MINLP (10) can be relaxed to the NLP given in (12), by allowing

the 𝜎𝑖 variables to belong to the convexified domain 𝜎𝑖 ∈ [−1, 1]. The
optimisation problem becomes therefore:

minimise 𝑠0 + 𝑠1 + 𝑠2 subject to (9)
with 𝜎𝑗 ∈ [−1, 1], 𝑠𝑖 ∈ R+, 𝑖 = 0, 1, 2,

(12)

with the same boundary conditions (11).
Both problems (10) and (12) are stated with a standard formulation

and can be solved with available optimisation software.
5

Remark 1. There are two main motivations for choosing the standard
solver over the OCP, NLP, MINLP methods described above: firstly, the
guarantee of convergence; secondly, the speed of the computation. The
appeal of the other methods resides in the flexibility of extending the
formulation of the problem with other characteristics. We point out
that the standard solver is not suitable for the 3D case, where only
optimisation-based methods are feasible, since no closed-form solution
is available.

3.3. Machine learning

In a machine learning model, the objective consists in using data to
model a problem of the form 𝑦 = 𝑓 (𝒙), where 𝑓 is an unknown function
hat is approximated with 𝑓 . In other words, it is assumed that there

exists an 𝑓 that, for any arbitrary set of inputs 𝒙, produces the desired
answer �̂�. The input of the problem is generally multi-dimensional and
is represented by an 𝑛-dimensional vector 𝒙 ∈ R𝑛, while the output is
1-dimensional, �̂� ∈ R.

The process in which the form and parameters of the function 𝑓
are derived from the data is called the training of the model, while the
comparison between possible values of the hyper-parameters (number
of iterations, tree depth, learning rate, etc.) is called validation. Finally,
the evaluation of the goodness of the inferred 𝑓 with respect to the real
𝑓 is usually called testing.

The characteristics and the form of the function to be learned, of
the available input 𝒙, and of the output 𝑦 give rise to different kinds of
machine learning problems. Following Goodfellow et al. (2016), Zhang
et al. (2020), based on the availability of the target output, the machine
learning problems are classified into: (i) supervised learning, when the
output variables 𝑦, also known as labels, are known and can be used
to define a loss function; (ii) in unsupervised learning the inputs are
unlabelled.

Based on the form of the desired output, machine learning tasks can
be described as classification: when the model needs to learn a mapping
from a set of variables, called features, to a set of labels; regression:
when the model predicts a continuous outcome variable; or clustering
that seeks to identify a grouping of the examples given, such as the
ones in the same group are more similar among each other than those
belonging to other groups.

For the Markov–Dubins problem, the input variables are in principle
7, the initial and final postures (𝒑𝑖, 𝒑𝑓 ) and the maximum curvature 𝜅,
as shown in Section 3.1; it is possible to reduce them to 3, exploiting
the double symmetry of the problem, taking advantage of the recent
results presented in Bevilacqua et al. (2020).

The Markov–Dubins problem can be mapped to a multiclass clas-
sification problem in a supervised learning setting, where the input
parameters can be used as features 𝒙 to obtain the optimal manoeuvre
�̂�.
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3.3.1. Supervised machine learning
In the setting of supervised learning, a central concept is the loss

function. Let 𝐷 = {(𝒙𝑘, 𝑦𝑘)}𝑘=1…𝑚 be a dataset of 𝑚 samples, where
𝒙𝑘 = (𝑥𝑘1 ,… , 𝑥𝑘𝑛) is a random vector of 𝑛 features and each 𝑦𝑘 ∈ N is a
target. The samples in 𝐷 can be assumed independent and identically
distributed using the principle of maximum likelihood; it can be shown
that the goal of a learning task is to train a function 𝑓 ∶ R𝑛 ↦ N
which minimises the expected loss (𝑓 ) ∶= E [𝐿(�̂�, 𝑦)]. 𝐿 is a smooth
loss function and (𝒙, 𝑦) is a test example of the training set 𝐷:

𝐿(�̂�, 𝑦) =
𝑚
∑

𝑖=1
𝑤𝑖 log

(

𝑒𝑎𝑖𝑡𝑖 (�̂�,𝑦)
/ 𝑛

∑

𝑗=1
𝑒𝑎𝑖𝑗 (�̂�,𝑦)

)

/ 𝑚
∑

𝑖=1
𝑤𝑖. (13)

A machine learning task aims at finding the set of parameters {𝑤𝑖}𝑚1 , 𝑎𝑖𝑗
such that the loss function (13) is minimised.1

3.3.2. Decision trees
Decision trees are classifiers that can work with both categorical and

continuous input data. The basic idea consists in recursively dividing
the feature space until the resulting regions all share a common output,
𝑦. The recursive decision process is thus modelled as a tree. Each node
stands for a test on one of the input’s features (attributes), and its
children represent all the possible outcomes of the test. For categorical
data, usually, each attribute value gets its nodes, whereas the domain
of the continuous data is split by means of one or more thresholds. Each
tree leaf represents a region where the expected answer for the learning
task at hand is the same, from which the probability distribution over
the output categories can be obtained.

3.3.3. CatBoost
We use a supervised categorical approach based on gradient boost-

ing and decision trees using CatBoost, a state-of-the-art library for
supervised categorical learning based on gradient boosting, which sup-
ports numerical and categorical features; see Prokhorenkova et al.
(2019) and Hancock and Khoshgoftaar (2020) for a survey. A CatBoost
model consists of a set of decision trees selected iteratively to minimise
the collective expected loss. With reference to the loss function of
Eq. (13), the model provides the values for 𝑎𝑖𝑡𝑖 as RawFormulaVal
outputs, thus it is possible to compute the probabilities for each class
by computing the sof tmax function.2

4. A machine learning approach to the Markov–Dubins problem

The Markov–Dubins optimal path selection is a clear example of
categorical inference problem. When it comes to ML, there are many
methodologies and strategies that can be adopted to solve the prob-
lems. This Section is intended to describe the reasoning underlying the
procedure that led to the results of Section 5.

Two approaches are proposed:

1. the ‘‘bare model’’, a model that directly outputs the best manoeu-
vre, whose results are discussed in Section 5.3.

2. the ‘‘hybrid model’’, a model that outputs a set of candidate
manoeuvres, together with their probability of being the best
manoeuvre. In this case, the most promising candidates can be
then checked using a standard Markov–Dubins solver: the trial-
and-error method is only carried out on selected cases with a
probability above a certain threshold. The results obtained with
this model are discussed in Section 5.4.

1 https://catboost.ai/docs/concepts/loss-functions-multiclassification.html
2 https://gist.github.com/CristianCantoro/f850adf7999dc6224f189017b6b

e433
6

The aim of the first solution is to substitute the standard Markov–
Dubins solver with a learned model, i.e., given the inputs 𝜗𝑖, 𝜗𝑓 and

obtain the optimal manoeuvre. With this model, together with the
rediction, a probability representing the confidence of the model
bout the output is obtained. In specific scenarios, when multiple
anoeuvres are almost equally likely (such as along the region borders

n Fig. 3), the model prediction heavily depends on the training dataset
ampling resolution; in rare cases, a sub-optimal manoeuvre may be
elected. To enhance the precision of the system without increasing the
ize of the learning dataset, another solution has been developed that
xploits the information about the prediction’s confidence, i.e., a hybrid
pproach. In other words, the learned model is used to limit the number
f candidates to evaluate with the standard Markov–Dubins solver and
elect the best.

Given the low dimensionality of the input and the fact that dense
egions share the same solution, decision trees have been selected as
odels to train. CatBoost has thus been elected as a state-of-the-art ML

ibrary for categorical distribution learning with decision trees.
The training set is composed of 489 648 elements. For the validation

nd testing, two additional and independent datasets have been gener-
ted, by randomly generating samples within the triangular prism  .
hese validation and test datasets contain 139 899 and 69 950 samples
espectively, yielding the standard proportion of 7 ∶ 2 ∶ 1 for training,
alidation and testing.

The model is characterised by several parameters3:

• Tree Depth: the maximum depth for each decision tree;
• Learning Rate: the percentage of the gradient that is back-

propagated from one generation of the model to the next;
• Random Strength: the amount of randomness to use for scor-

ing splits when the tree structure is selected, this reduces the
overfitting of the model;

• Number of Iterations: the maximum number of trees that can be
built when solving machine learning problems.

At the end of the training, the model gets pruned to the number of
rees that show the best performance.4 Models with less and shallower
rees have a smaller memory footprint and are therefore faster to use.
or this reason, being that the precision is equal, the simpler models
ave been selected.

Finally, the selected model has been exported in the binary dump
ormat, in this way it has been possible to write a simple standalone
rogram that loads the model and applies it to a set of inputs.

For the first solver, the model gets applied to return a prediction,
hich is the class with the maximum probability. For the second one,

he model is used to obtain the probability for each manoeuvre, then
hose whose probability is higher than a pre-defined threshold are
valuated with the standard solver; finally, the actual best path is
eturned.

. Results

.1. Hyper-parameters

Several models were trained by varying the hyper-parameters over
anges reported in Table 1. A preliminary analysis showed that accu-
acy is inversely correlated with Learning Rate and directly correlated
ith Number of Iterations and Tree Depth, while Random Strength is
ncorrelated. Moreover, the accuracy reaches a plateau for values of
earning Rate lower than 0.70. Thus the analysis focused on setting
earning Rate to 0.70 and Random Strength to 0.15.

3 For a more detailed definition, refer to CatBoost’s documentation: https:
/catboost.ai/docs/concepts/parameter-tuning.html.

4 Option use_best_model=True.
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Fig. 4. Heatmaps of the bare models versus the Number of Iterations and Tree Depth.
n (c) the solid red line corresponds to the execution time of the classical Markov–Dubins solver (𝑡 = 58ms).
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Table 1
Range of the hyper-parameters used in the training.
Tree Depth 4, 6, 8, 10, 12, 14, 16
No. of Iter. 1, 3, 6, 8, 12, 25, 50, 100, 200, 400, 800, 1600
Learn. Rate 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90
Rnd. Strength 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35

Table 2
Error on the optimal length 𝐿 and timing with different OCP
softwares.
OCP solver Error Time (ms)

PINS/XOptima 10−7 357
Acado 10−2 895
Gpops 10−7 756
ICLOCS 10−5 689

5.2. Comparisons with other solution methods

In this section we compare and comment the pros and cons of the
results obtained with other available techniques in literature.

5.2.1. Standard solver performance
As introduced in Section 3.2.1, the standard solver is a trial-and-

error technique that enumerates all solutions and selects the best one.
Therefore, it has 100% accuracy and is capable of solving the testset of
the problem in 𝑇std = 58 ms.

5.2.2. OCP solution performance
Solving a single OCP requires considerably more time (about half

a second) than the use of the standard solver, which computes the
whole dataset in 58 ms. We tested therefore the performance of the
OCP on a single problem instance, with results averaged over multiple
repetitions. Several softwares have been considered, the results are
collected in Table 2. The results show that an OCP is by far slower
than the standard solver, the accuracy is also not always very precise,
compared to the exact solution. Another important comment is that the
solution is highly dependant on the initial guess.

5.2.3. MINLP solution
A MINLP is also a hard problem to be solved in little time, we

employed Knitro to solve a subset of the dataset. The computational
time required to solve the subset of the dataset is large and an instance
7

Table 3
Top-5 bare models by accuracy, ties are ordered by size.

# No. of
Iter.

Tree-
Depth

Execution
Time (ms)

Training
Time (s)

Size
(kB)

Accuracy
(%)

1 400 6 117 47 1063 95.728
1 800 6 121 94 1063 95.728
1 1600 6 121 190 1063 95.728
4 200 6 97 24 736 95.565
5 1600 8 107 297 3437 95.502

is on average comparable to the time required to solve an OCP, so less
than one second. The MINLP was able to solve correctly about 85% of
the cases, with good accuracy, i.e., an error smaller that E-06. These
results are in agreement with Bevilacqua et al. (2020).

5.2.4. NLP solutions
We tested the solver described in Section 3.2.5 (NLP from Relaxed

MINLP) and compared it with the results of Kaya (2017) (NLP from
OCP discretisation) of Section 3.2.3. For the NLP obtained relaxing
the MINLP (using Knitro), we obtained 100% accuracy with an error
which was always smaller than E-13 (up to E-16 - machine precision),
but computational times that were in the order of the second for each
instance of the problem. The OCP discretisation was successfully used
in Kaya (2017) using the solver Knitro and with an equivalent accuracy,
the computational times were not reported, but can be expected to be
in the same order of magnitude.

5.3. Bare-model solution

In this section we present the results obtained with the ML method
proposed. Table 3 presents the top-5 ML-only models in terms of accu-
racy. All the experiments were executed on a machine equipped with an
Intel® Core™ i7-4790@3.60 GHz CPU and 32 GB of DDR3@1600MHz
RAM running the Linux kernel version 4.15.0-142-generic. The best
models were obtained with Tree Depth equal to 6 and top off with
Number of Iterations 400 at 95.728% of accuracy. The table also shows
he time elapsed for training the models and the size in megabytes of
he resulting trained models, when exported using the native CatBoost
inary format .cbm. Both the training time and the size depend heavily

on Number of Iterations and Tree Depth.
Fig. 4 shows the size 4(a) of the model, its accuracy 4(b) and

execution time 4(c) for several different settings for Number of Iterations
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Table 4
Accuracy on the test set for other methods in bare mode.
Family Method Accuracy

(%)

Random
Forest

Boosted Trees 91.76
RUS boosted 84.94
CatBoost 95.73

SVM

Linear 84.49
Quadratic 83.89
Cubic 78.51
Gaussian 96.03

Look-up Table 94.12

and Tree Depth. For the bare solver, the running time is 𝑇bare = 117 ms,
size of 1 megabyte, and a training time of 47 s.

We conclude the section presenting the learning results of other clas-
ic ML methods, namely Random Forest and Support Vector Machine
SVM). The results are collected in Table 4, from which we can see that
ome of them perform worse than CatBoost, the Gaussian SVM is more
r less equivalent to CatBoost, that is therefore kept as the baseline. As
round truth, we report also the accuracy of a look-up table, consisting
f 489 648 samples (the same used as train set for the ML methods).

.4. Hybrid solution

The results of the hybrid approach are herein discussed. This ap-
roach guarantees a higher accuracy for the predictions of the model,
rovides more flexibility and it is faster to compute than the standard
arkov–Dubins solver. With this approach, it is possible to trade some

ccuracy of the bare model for a faster execution time.
When making a prediction, the model can return the probability

ssociated with each class. In the first proposed solution (bare model),
he class with the maximal probability is returned as the predicted class.
n general, along the border between two classes (see Fig. 3), there can
e multiple classes that receive a high probability. For this reason, a
hreshold on the predicted probability is set and the solution for all the
andidate manoeuvres that are above the threshold is computed.

For each model trained in the previous approach, several values for
hreshold have been chosen: {0.001, 0.01, 0.1}. The predicted classes that

have a probability higher than the chosen thresholds are tested using a
standard Markov–Dubins solver and the best manoeuvre among them
is returned. This returns the correct solution if the optimal manoeuvre
has not been incorrectly pruned by the model.

The top-5 models in terms of total accuracy that run faster than the
standard Markov–Dubins solver are presented in Table 5.

The information provided in Table 5 can be read in several ways.
For each model it is possible to consider the accuracy and speed of
the bare model, i.e., just selecting the manoeuvre with the highest
probability or the hybrid model, which uses the stated threshold and
computes the length of several manoeuvres to select the best one.

The best model (#1), when running bare achieves an 8.3-fold
speedup compared with the standard Markov–Dubins solver, with an
accuracy of 91.651%. Then, running this in hybrid mode with thresh-
old, an accuracy of 98.556% is reached, with an execution time com-
parable with the classical solver 𝑇hybrid = 58 ms.

Another point of view considers the error committed in terms of
elative additional length to be travelled – i.e., when the selected
anoeuvre is sub-optimal – all the best models lie in the range of
8–77% on average, with the best model being #4, which is still 2.9
imes faster than the standard Markov–Dubins solver.

Finally, the model with the lowest total execution time among the
elected ones is #5, which runs in 53ms, while maintaining a high
ccuracy both for the bare (92.855%) and hybrid (95.494%) models.

Table 6 reports the percentages of the tested manoeuvres for the

iven threshold, highlighting the proportion of when the model runs

8

are with respect to when it runs hybrid (when it tests two or more ma-
oeuvres). In the majority of cases, every model returns the manoeuvre
ith the highest probability. The first model runs bare for 69% of the

ases, thus returning the solution 8.3 times faster than the standard
olver. In the remaining 31% of the cases, it works hybrid and has
o test two or more candidate solutions with the standard solver. The
orst case happens only in 12.3% of cases, when all 6 manoeuvres are

ested, as with the standard solver.

emark 2. The present study aims at understanding what can be the
enefits of a ML approach in a path planning problem. Clearly, it is
ot possible to do better in terms of accuracy than the closed-form
ethod represented by the standard solver, but we have proved that it

s possible to reach the same time performance of the standard solver
lso with the learnt model, solving correctly more than 95% of the
ases, a threshold that can be accepted in the application, for instance
f the method is combined with a rapidly exploring algorithm like
RT*, which is a popular technique, or in case of high speed obstacle
voidance in real-time, for instance using a Dubins-tentacle method
like it has been proposed with clothoid curves in Alia et al. (2015)),
here speed of computation is more important than length optimality

which is still at most 77% more than the optimum). The speed profile,
aking into account the vehicle dynamics, can then be computed in
emi-closed form, e.g., as in Frego et al. (2017), since Markov–Dubins
aths can be considered particular cases of clothoids (Bertolazzi et al.,
018a,b). The ML method is also clearly better in terms of running time
han any of the other optimisation-based methods.

Also, the availability of complete knowledge in the 2D case, allows
s to precisely measure the results obtained with ML as well as with
he other optimisation-based techniques.

What is more, in our perspective, is to understand what kind of
elp can this ML method give if we look at the more challenging
roblem of Markov–Dubins in 3D (e.g., shortest path for an airplane),
here closed-form solutions are not known and a solver should rely on
ptimisation-based methods only. A ML-based solver in bare or hybrid
ode would be very beneficial to reduce the number of trial-and-error
anoeuvre testing to 1 or a bunch, respectively. Indeed, testing by

rute force the many cases for a single 3D path, computing a NLP each
ime, takes some minutes: being able to select just a few manoeuvres
o test would speed-up the process a lot, by inserting in the problem
he characteristics of the candidate solution, thus reducing the number
f the unknowns, in particular the integer variables of curvature and
orsion.

.5. Computational remarks

The CatBoost library offers a set of APIs for embedding models in
ther languages such as C, Python, and Rust, and comes with a huge
verhead. To mitigate this behaviour, several strategies were tried, for
xample ensuring that the model was loaded ahead of time and that
ll support and intermediate data-structures were pre-built by running
ome warm-up evaluation tests.

Unfortunately, the issues seem to reside deep inside of the CatBoost
ibrary itself and in particular with how model evaluation APIs are
eing exposed. Indeed, the same behaviour has been observed across
ifferent languages.

For this reason, it was decided to use the batch API for model eval-
ation to minimise the effects of this intrinsic overhead by spreading it
ver all the test samples (69 950), being aware that this may not cover
he same use cases as a classical Markov–Dubins solver.

An ad-hoc model evaluator can be developed for using the solution
n production, which should overcome the aforementioned limitations
aced with the CatBoost library. This solution remains an avenue to
e explored in future work, however, it is expected that it will bring
ignificant speedups.
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Table 5
Top-5 hybrid models faster than the standard Markov–Dubins solver ordered by accuracy (higher is better, in bold the best model). The last
column reports the relative additional length to be travelled (lower is better, in bold the best model).
# No. of

Iter.
Tree-
Depth

Threshold Bare
Time (ms)

Hybrid
Time (ms)

Training
Time (s)

Size
(kB)

Bare
Acc. (%)

Hybrid
Acc. (%)

Additional
Len. (%)

1 3 12 0.01 7 58 3062 679 91.651 98.556 77
2 25 8 0.10 14 55 4613 345 94.084 96.417 65
3 12 12 0.10 13 58 12297 2696 93.633 96.096 64
4 25 10 0.10 20 57 8749 1409 94.004 95.920 58
5 12 8 0.10 10 53 2207 176 92.855 95.494 66
Fig. 5. Example of exploring tentacle method based on the Markov–Dubins planner. Starting from an initial pose, given by the current vehicle’s position, many paths are computed
simultaneously for multiple end poses, i.e. final points and orientations.
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Table 6
Percentage of test points that required computing 𝑛 manoeuvres.

# Thr. 1 2 3 4 5 6

1 0.01 69.0 12.7 3.3 1.4 1.3 12.3
2 0.10 90.8 8.3 0.9 – – –
3 0.10 90.8 8.1 1.1 0.1 – –
4 0.10 92.8 6.4 0.7 – – –
5 0.10 90.4 8.3 1.3 – – –

The task domain is restricted to variables in double precision;
urthermore, the trained model can be exported in various formats,
uch as JSON. Then the model prediction can be evaluated by running
he decision trees over the input features. This ad-hoc solution should
lso have a smaller footprint than the model provided by CatBoost,
hose shared library weighs about 125 MB. The performance of such
n evaluator is reasonably expected to be on par or better than the
atBoost’s one, so this works’ conclusions stand.

Experiment in Batch mode. A possible way of taking advantage of
he vectorised instruction provided by CatBoost (as well as by many
ther ML tools) is in exploring task or reachability analysis. In such
pplications, a large number of paths needs to be generated at the same
ampling time. For instance, we can combine the present approach
 e

9

ith an exploration method based on the tentacle technique: given the
urrent vehicle pose, many possible destination poses around it are
ampled and the two posed connected with a Markov–Dubins path,
ee Fig. 5. The resulting paths are then pruned checking for possible
ollisions with obstacles, weighted with a score function like length,
omfort, jerk, or other metrics and the best candidate is fed to the
ow level controller to be executed. Clearly, the finer the granularity of
his exploration, the better the performance. The application scenarios,
or a real car are usually of limited power embedded hardware and
ime limitations (100 ms), (Alia et al., 2015; Mouhagir et al., 2020).
n this experiment we compared the times and number of generated
aths with the standard solver and with our approach. For consistency,
e kept the computational platform used for the previous examples,

ince we are interested more in the ratio of times than in their absolute
alue. We generated 1000 Markov–Dubins tentacles, like the ones
epicted in Fig. 5. The computation with the standard solver took about
.54 ms, whereas our method (with the most accurate hybrid model)
ook 0.09 ms, corresponding to a 6-fold gain. In a real planner (which
s out of the scope of the paper), it would be then required to check if
he paths are collision-free at least with static obstacles, find a suitable
peed profile, merge path and speed profile to produce a trajectory and,
inally, evaluate each feasible path with a score metric like length, time,
nergy, comfort, jerk, etc.
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6. Conclusions and future research perspectives

The applicability of machine learning models and techniques to path
planning and in particular to the Markov–Dubins problem has been
explored in this paper. This fundamental planning problem is simul-
taneously easy enough to state and highly nonlinear to be challenging.
Also, its complexity is sufficiently low to make a brute force solution
search feasible, which allows for the creation of an exact supervised
model for test and comparison.

A state-of-the-art machine learning model, based on the CatBoost
library, was trained in a supervised setting on the Markov–Dubins
problem and used in two different ways: to directly predict the best
manoeuvre, and to filter candidate manoeuvres over a certain proba-
bility threshold before applying the standard solver. Aim of the study
was to compare the quality and speed of these solutions with a state of
the art solver, which is not based on machine learning.

Two solutions are therefore proposed: the first one focuses only
on accuracy and, as best model, is selected the one with the highest
predicted probability. This approach leads to selecting the correct
manoeuvre in over 95% of the cases, albeit being slower than the
standard Markov–Dubins solver that is not ML-based; a big advantage
is however present if we compare our solution with solvers based on
OCP, NLP and MINLP that have calculation times higher than one or
two orders of magnitude.

The second is a hybrid approach that cares about accuracy and
execution time using a threshold on the prediction probabilities; all the
manoeuvres for which the model predicted a probability higher than
a predefined threshold were tested with the standard Markov–Dubins
solver. The best solution, when running in the fastest configuration,
achieves an 8.3-fold speedup compared to the standard Markov–Dubins
solver, with an accuracy of over 91% and a maximal suboptimal length
of at most 77% of the optimal length. With the maximal accuracy
configuration, it reaches an accuracy of over 98% with an execution
time on par with the classical solver.

This exploratory work provides several insights into the application
of machine learning techniques to the Markov–Dubins problem and it
should represent a starting point for future research. For instance, the
present work can be used in a future work to investigate the possi-
bility of generating a large number of manoeuvres in a shorter time
with respect to the standard brute force solution in the framework of
sampling-based motion planners, also for the estimation of a heuristic
cost to reach the goal posture.

Another consideration to make is that the Dubins car moves only
forward; its extension, the Reeds-Shepp car, also moves backwards
(Reeds and Shepp, 1990), generating up to a total of 48 possible
manoeuvres made of lines and circles for the trial-and-error method.
A further example is provided by the extension of the Markov–Dubins
problem in 3D (Kladis et al., 2011; Marino et al., 2016). Already for
these examples, the benefits of the proposed machine learning methods
will be more significant.
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